e.BO

Impedance Spectroscopy as a Battery State-Of-Health Indicator

REM, September 2011, Kocaeli

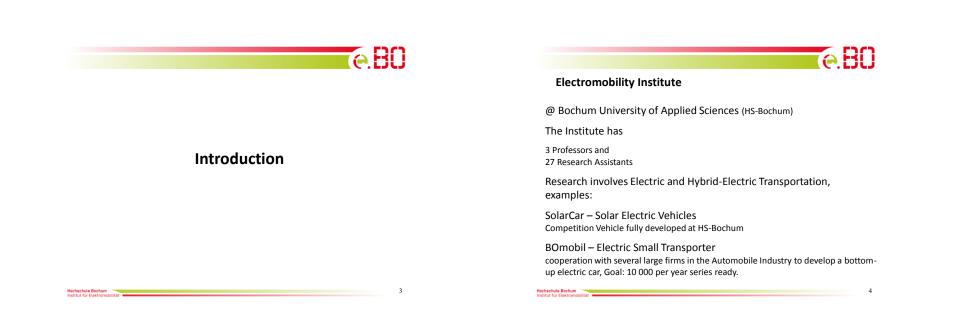
M.Sc.E. Mattias Tjus Represented by Dipl-Ing. Andreas Stevens Institut für Elektromobilität Hochschule Bochum www.institu-leiktromobiliaet.de

Hochschule Bochum Institut für Elektromob

Content

Introduction Electromobility Institute BatMan-Project 🎧 RN

2


Theory Batteries Impedance Spectroscopy

Idea Theoretical Idea Practical Idea

Hochschule Bochum

Questions

BatMan-Project

Two parts:

- Series Production ready Battery Management System for Electric Vehicles.

- Researching Battery State-of-Health indications

Researchers

lochschule Bochum Institut für Elektromobi

- Mattias Tjus, M.Sc.E.

- Prof. W. Ritschel, Prof. J. Albers, Project leaders

- B.E. Manuel Berg, Student researcher

- Dipl.-Ing. N. Stentenbach, Scientific Advisor

- Prof. B.-E. Mellander, Scientific Advisor, Chalmers TH, Sweden

Background Theory

5

e.BO

Batteries

Demands on Capabilities of EV Batteries (approximate figures by the author)

- Enough capacity for Most Daily Travels (eg. 200km/day, ca 40kWh)

- Practical Weight (eg. complete EV-drive train mass = mass of a standard engine, gears and gasoline tank, below 500kg)

- Charge over night and Fast Charge capability (8h 100%, 30min 80%)

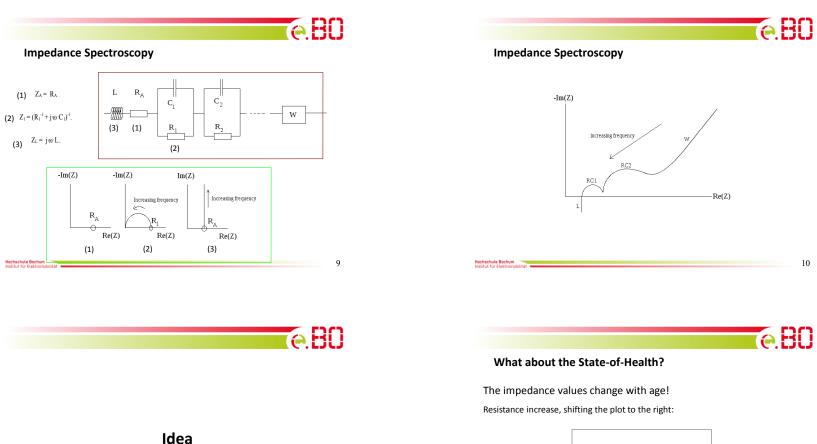
Lithium Ion

Batteries	Energy Density Optimized (eg. Laptop-cells)	Power Density Optimized (eg. Power tool-cells)
make this possible!	250Wh/kg	115Wh/kg
Panasonic NCR18650A A123 20Ah	500w/kg	2 400W/kg
	40kWh ~ 160kg	350kg
	160kg ~ 80kW	350kg ~ 840kW
Hochschule Bochum	45 min Fast Charge	10 min Fast Charge

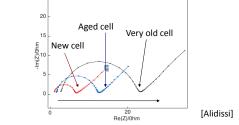
Impedance Spectroscopy

Frequency dependant Impedance

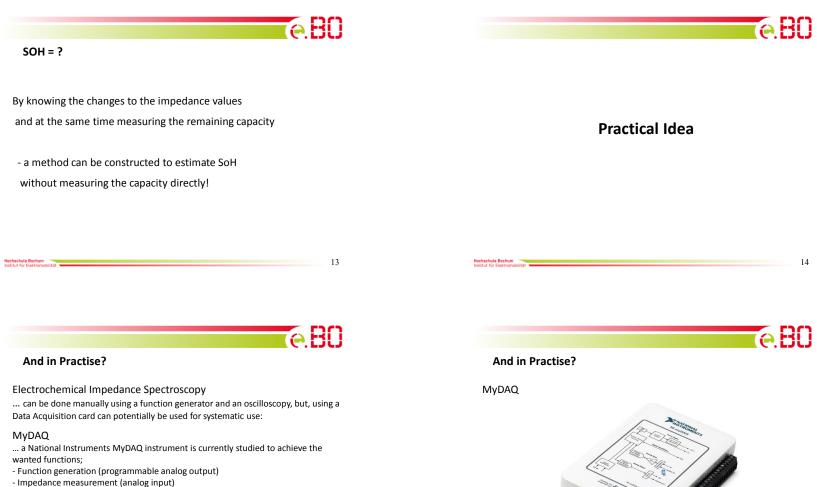
Cell properties influence complex impedance. Real impedance, resistance: connections, electrolyte Complex Impedance: Cathode and Anode geometry, ion diffusion


Electrochemical Impedance Spectroscopy

- Send a known signal over a load (Battery) and measure the response.


Comparing impedance plots (Nyquist Diagrams) considering regular electronics parts, as resistors and capacitors, with a Battery, some approximations can be deduced: (next slide)

ochschule Bochun



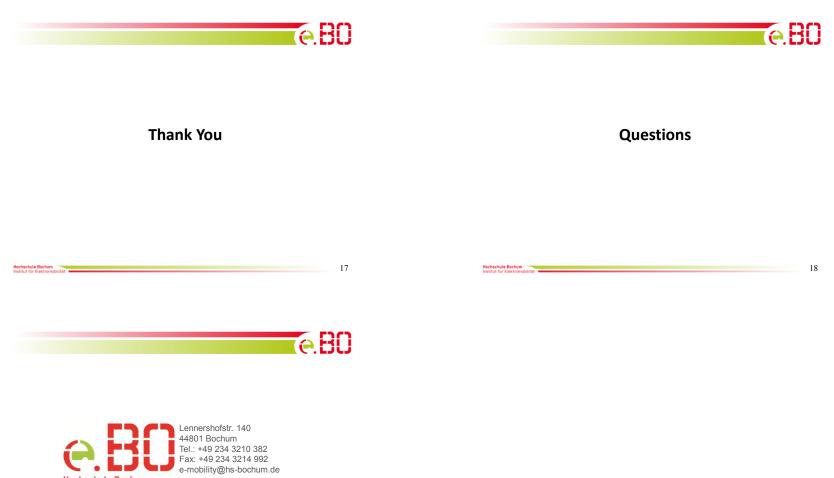
Hochschule Bochum

Hochschule Bochum Institut für Elektromobilität 11

12

Hochschule Bochum Institut für Elektromot

- Easy-to-use computer interface


Problem

... A bridge will most likely be needed to allow the instrument to work with the very low impedance of a large lithium ion battery (milliohms)

Hochschule Bochum Institut für Elektromobilität

15

16

e-mobility@hs-bochum.de Hochschule Bochum Institut für Elektromobilität www.institut-elektromobilitaet.de